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NOMENCLATURE

analytical limiter input (used in describing function analysis)
analytical limiter value (used in describing function analysis)
describing function gain

deadband of rudder pedal deflection

deadband in rudder pedal intecgrator

rudder pedal to rudder gearing function and limiter

digital computer sampling frequency

full authority series servo gain

open loop transfer function

moment of inertia about aircraft z-axis

root locus gain

control mode phase-out gain

gain of roll attitude feedback into yaw controller

parallel/series servo mode combined analysis gain
= (l(ps x K30 x KYC x =1 x FCN)

parallel servo gain

parallel/series servo mode combined analysis gain = (Kss X KBO)
series servo gain

actuation dynamics torque gain

additional parallel servo gain

yaw attitude feedback gain

yaw rate feedback gain

pedal integrator gain
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combined analysis gain = (K¢ x KWH)
K. combined analysis gai, = (Kjp + Kyp)

K full authority series servo mode combined analysis gain
= (Kyp x -~ 1 x G~ FCN x Kygpque/1z)

Ks parallel/series servo mode combined analysis gain
Kio yaw controller forward gain component
Ko yaw controller forward gain component
P yaw controller coupling gain
IMsq position limit of rudder pedals
v
LM‘pC yaw controller coupling limit

SRFIMF state-rate-feedback-implicit-model-following

T igital computer sampling period

B aircraft sideslip angle

éI time derivative of inertial sideslip angle
61w pilot control input to yaw controller (pedal input)
T, actuation model time constant

T, flight controller compensation time constant
¢ aircraft roll attitude

) aircraft yaw attitude (heading)

i aircraft yaw rate

& aircraft yaw acceleration

wAL experimental limiter output

wBL experimental limiter input

vi



-
Wmen s

AN ANALYSIS OF A NONLINEAR INSTABILITY IN THE IMPLEMENTATION
OF A VTOL CONTROL SYSTEM DURING HOVER
Jeanine M. Weber

NASA-Ames Research Center

SUMMARY

An analysis has been conducted to determine the contributions to non-
linear behavior and unstable response of the model following yaw control
system of a VTOL aircraft during hover. The system was designed as a state
rate feedback implicit modeir follower that provided yaw rate command/heading
hold capability and used combined full authority parallel and limited
authority series servo actuators to generate an input to the yaw reaction
control system of the aircraft. Involved in the analysis were linear and non-
linear system models, and describing function linearization techniques to
determine the influence of input magnitude and bandwidth, series sevo
authority and system bandwidth on the control system instability. Results
of the anzlysis describe stability boundaries as a function of these system
design characteristics.

INTRODUCTION

The use of advanced control systems that provide stabilization and
command augmentation for attitude, translational velocity, and position
control have been shown to reduce pilot workload for VTOL hover operations
(references 1 and 2). One such example is the state-rate-feedback-implicit-
model-following (SRFIMF) concept examined in reference 3, which achieves
model-following fidelity through the feedback of acceleration, rate and atti-
tude signals. In the ground simulation experiment of reference 3, this
concept was shown to enhance the capability of the pilot-aircraft system to
perform a demanding hover (and deceleration) task.

In-flight evaluation of several such control systems, including SRFIMF,
with a VTOL research aircraft has been proposed. Toward that end, it is
anticipated that the control system of an existing operational VTOL aircraft
will be modified to permit incorporation of these concepts. In order to
minimize the cost of implementation, a simplex electronic control system with
manual ov:rride capability has been suggested. Safety considerations would
be satisfied with a parallel/series servo arrangement of the actuators such
that each servo is limited to contain a runaway failure. The parallel servo
would be full authority and have a limited rate-of-actuation., The series
servo would be position limited and capable of a high rate-of-actuation.
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The reference 3 ground simulation assumed a full-authority fly-by-wire
control system and did not address possible influences of the parallel/series
servo mechanization on the SRFIMF control system. Hover simulation of the
SRFIMF controller implemented in this manner during a control system failure
study at Ames Research Center in August, 1979 (reference 4), revealed a non-
linear instability in the yaw axis. An electrical limiter in the control
system, designed to limit the servo input upstream, saturated and cycled
causing the divergent oscillation of the output signals. Although during the
simulation, the instability was apparent only in the yaw axis, it is antici-
pated that there is a potential problem in any channel using the parallel/
series mechanization.

The purpose of this study was to examine the causes and characteristics
of this nonlinear instability. A describing function analysis technique
(reference 5) was used in the study. Simplifies linear and non-linear models
of the controller, actuation and airframe dynamics were used to isolate and
analyze the problem experimentally. The analysis encompassed only the wings-
level hover flight condition.

This report presents the results of this analysis, including a descrip-
tion of the model with the appropriate simplifications, and analyses of the
linear and nonlinear systems. The Nonlinear System Analysis portion involves
a description of the system, theoretical and experimental approaches to under-
standing nominal system response, and experimentally establishing stability
boundaries by varying system configuration.

MODEL DESCRIPTION

The SRFIMF yaw control system has been simplified for purposes of
analysis. Included in the simplified model are the yaw flight controller,
the option for selecting either parallel/series or full authority series
servo implementation, actuation dynamics and yaw response of the aircraft
which neglects aerodynamic effects.

Figure 1 shows the SRFIMF yaw control system as taken from figure 14 of
reference 3. Shown in figure 2 is the yaw control system used in the
analysis, which includes the following simplifications from the figure 1
model: deletion of the electrical deadbands on the pedal inputs to the sys-
tem (DBsy, and DBy,), deletion of the sideslip command mode (located down-
stream of the By and B 1inputs) which is active only for flight at or
above 30 knots, and deletion of the tan¢ input path which is inapplicable to
this wings-level analysis.

Figure 3 shows a block diagram of the simplified overall control system
including servo implementation and actuation dynamics. The implementation
flag selects either the parallel/series servo mode (1) or the full authority
series servo mode (0). The limiter IMy. shown in figure 2 limits the servo
input signal in the case of a runaway failure. A digital representation of
the model shown in figures 2 and 3 was used in the analysis.
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The problem has been analyzed in two parts: Initially the limiters were
removed and the linear response was studied in each of the parallel/series
and full authority series servo modes. The p »se of this was to understand
the linear system response, and to verify the Apiified Fortran model. The
limiters were then introduced and the nonline response was analyzed theo-
retically with the describing function technique and experimentally using
the time histories generated by the Fortran program.

LINEAR SYSTEM ANALYSTS

Linear System Classical Stability Analysis

This section describes the response characteristics of the linear system
in terms of classical analysis techniques.

With further simplification, the block diagrams in figures 2 and 3 have
been reduced to figures 4 and 5, representing the parallel/series and full
authority series modes respectively.

Gain and signal equivalences between SRFIMF and the analysis, as well as
the nominal gain values are given in the Appendix.

From figures 4 and 5 the open lnop transfer functions of each mode can

be written:
K K 1 K\ /[,
Kl-= 5)(5 +—)(s + 2 (s + K:S+K
T2 7 K, v J

GH(s) = m 1 (1)
Parallel/Series S (S + ——)
Servo Mode T2
(Linear System)

x(ﬁ)(s + —1—)(52 +K: S + x)

12 T, 1] 'l

GH(s) = 3 1 (2)
Series Servo S (S +-——)
Mode T2

(Linear System)
where K 1is the open loop gain factor.

A root locus of the parallel/series mode ies shown in figure 6 with
partial root loci of each mode in figures 7 and 8 showing only the imaginary
axis region. From figures 7 and 8 it is apparent that the system is condi-
tionally stable in each mode, thus gain reduction is sufficient to destabi-
1ize the response. Note that in the parallel/series mode, the high frequency
eigenvalues cross the imaginary axis at a higher gain value than in the series
servo mode, thus the series servo mode remains stable at a lower effective
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system gain. From equations (1) and (2) it can be seen that the series servo
mode has three open loop integrators, whereas the parallel/series mode has
four. In the nonlinear system, the extra integrator associated with the
parallel/series servo implementation introduced a further destabilizing
effect to the system,

Relative degrees of conditional stability between the modes are also
illustrated using frequency response techniques. Figures 9 and 10 are Bode
diagrams of the linear system. The higher gain and phase margin of the
series servo mode indicate the increased resilience of that mode to system
gain and phase angle reduction. From the figures it can be seen that the
series servo mode becomes neutrally stable at the phase crossover frequency
(2.2 rad/sec); above this frequency the system has a stable response. Due to
the conditional stabiltiy of the system, if the Bode gain is reduced z1 db
below the total loop gain of the design, the system becomes unstable. By
contrast, the parallel/series servo mode has a phase crossover frequency of
4.5 rad/sec and the total loop gain can only be reduced by 11.6 db without
destabilizing the system.

Computer Model Verification

The nominal sampling period, T, of the full Harrier simulation on the
Xerox Sigma 9 computer is .05 sec, corresponding to a sampling frequency, fs,
of 20 Hz. However, when the linearized model (limiters removed) is run at
T = .05 sec, the characteristics of the time response are not equivalent to
those predicted by the iinear root locus analysis. When the sampling fre-
quency is increased by a fauctor of ten (T = .005, fy = 200 Hz), the time
history characteristics compure well to those predicted by the linear analy-
sis in the region of marginal to neutral stability. Figure 11 shows a com-
parison of the marginally stable mode chardcteristics as extracted from the
time history responses run at T = .05, T = .005 and the linear analysis.

It is apparent from this comparison that the slower sampling frequency
reduces the damping of this mode substantially and can lead to erroneous
conclusions regarding system stability. Thus, for accuracy purposes, the
analysis of this problem has been accomplished with a sampling period of
T = .005 sec.

NONLINEAR SYSTEM ANALYSIS

Nonlinear Control System Elements

The non-linear control system includes limiters on series servo position
and on the yaw reaction control.

The purpose of the first limiter is to arrest the series servo input to
the yaw control actuator in the case of a series runaway failure. The limits
are determined by the percentage of total control power that is acceptable to



be allotted to the series servo. The practical limits on series servo control
power are a compromise between that required for effective control augmenta-
tion and that acceptable based on hard-over servo failure. With inputs of
sufficient magnitudes and above specific frequencies the series servo was
found to saturate and limit cycle, causing a divergent oscillation of the yaw
response of the aircraft.

The yaw reaction control limit simply represents the total yawing moment
control authority. This authcrity limit may be reached if the parallel
actuator is driven to sufficiently large magnitudes by the pilot's control
inputs or by unstable response in the yaw axis.

Describing Function Analysis
One tool for linearization and analysis of nonlinear control system

elements is the describing function which is discussed in reference 5. The
describing function of a simple limiter is:

b

e 2 @) (V- ()

where
bl
e gain which replaces limiter in the linearization
A= wBL = magnitude of signal input to limiter

a = value to which output is limited

It can be seen from equation (3) that as the ratio of limiter size to signal
magnitude, a/A, varies between 1 and 0, the describing function gain, by /A,
varies between 1 and 0 also.

Shown in figure 12 is the parallel/series mode block diagram including
the nonlinear element and, in equation (4), the open-loop transfer function
with the equivalent linearized element. (A similar transfer function may be
written for the series servo mode.)

(bll(sxS )( 1_(2
K\ T2)(5 s+K s+xs+x"

GH(s) - (4)
Parallel/Series _ _L :
Servo Mode s3 A (S + _1_
(Linearized 1,
System)



As the limit on servo command is reached and b;/A decreases from the
linear value of 1, the effects on the uvpen loop transfer function are:

1. a reduction in system gain
2. movement of a pole from the origin along the negative real - :s.

By solving the characteristic equation at discrete bj/A values, the cor-
responding variation of the closed-loop roots of the system has been deter-
mined. Figures 13 and 14 show these root locations in each ~f the parallil/
series and series servo modes respectively. In these figures, it may be seen
that as b;/A decreases from 1, a low frequency mode is introduced. The
damping of this mode is reduced progressively as by /A approaches zero. In
the parallel/series mode (figure 13), as b;/A approaches zero, the closed-
loop roots of the system approach those of the open-loop case that has three
zeros at the origin, This leads to the low frequency eigenvalues being
forced into the right half-plane. In figure 14, however, the closed-loop
roots of the series system approach only two zeros at the origin as b;/A
approaches zero; thus, the root locus branches approach vertically and the
eigenvalues always remain in the left half-plane.

It may be concluded that describing function gain value has a signifi-
cant effect on system response and stability. Given system input, §1,, the
describing function gain value, b;/A, may be found with the transfer %unctlon
between system and limiter input, A/GIW’ given in equation (5).

X
K, s’ (s + L)(s + R-l—)(s + —1-—)
YaL A T2 2 T,

81, o1, b, (5
v v L -4
s3(s+—l—)s+—————“— +
T2 T7

IR )26 e

The complexity of the equation as a function of A prohibited solving
explicitly for A 1in terme of 51&' Instead, an iterative procedure was
used which consisted of:

1. guessing A
2. calculating the corresponding b;/A
3. calculating A = GIW x RHS

4, comparing calculated A with guess and, 1f they were not equal,
returning to 1. '

e p————



This iterative procedure was followed unti. the guessed value of A from

step #1 converged upen the calculated value of A from step #3, when the
corresponding describing function gain value, b;/A, for the given system
input, &y,, was able to be found from equatfon (3). Note equations (3) and
(5) show that although the describing function gain is inherently only magni-
tude dependent, its use in the closed loop analysis causes the limiter input
magnitude, A, and hence bj/A to be trequency dependent also. Thus, the fre-
quency as well as the amplitude component of system input, 61w. atfected the
iteration on by /A.

It is possible from this relationship to dete mine the effect on system
stability of th> amplitude and frequency of the p.lots input \87,), the servo
command limit (a), and the control system bandwiath as determined by the
overall system loop gain.

Effect of Implementation on Time Response

In this section, the differences in nonlirear dynamic response between
the parallel/series and series servo implementations are illustrated with
sample time responses and comparisons of those responses with the theoretical
predictions are made as a means of assessing the validity of the theoretical
model.

From the discussion in the previous section it may be anticipated that
the discernible effect of parallel/series servo implementation is a divergent
response once the magnitude of the pilot's input has reached a sufficient
level. It may also be anticipated that, although the damping of the series
servo mode response is greatly reduced, the response remains stable for all
inputs.

Shown in figures 15 through 22 is un ex: erimental comparison between the
responses of the parallel/series and series only modes at various input
magnitudes and frequencies for the nominal limiter authority of +.12 inches.
Among the time history traces shown are (top Lo bottom) limiter input,
limiter output, yaw acceleration, rate and heading and the pilot's pedal
input. Table 1 summaiizes the theoreticaily predicted response (i.e., limitar
input magnitude and nonlinear mode frequency and damping) and the results of
the experimentai comparison at each system configuration.

From figures 15 and 16, it may be seen that the parallel/series uystem
is stable with commanded output, y, in response to each of the low frequency
inputs. In figure 15, the low amplitude input of .1 in. does not saturate
the limiter. With an input amplitude of .4 in., figure 16 shows the initial
response of ¢, limited to .12 in. with respect to ypgL; however, the
response after this transient remains unsaturated.

Each of these cases was predicted very well by theory as shown in
Table 1, the unsaturated responses were predicted by s describing function
gain of 1.0 (limiter unsaturated), and no destabilizing nonlinear mode.
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The steady state limiter input magnitudes, A or yp;, are also corroborated
very well,

Increasing the frequency of the low amplitude input to 8 rad/sec in
figure 17 shows steady state limiter input, ¢pg;, to have increased to .23 in.
(compared with a predicted value of .24 in.) and Y, <s a stable limit
cycle. The describing function gain of .56 predicted the introduction of the
lightly damped, low frequency mode overlaying the system output, y¥. From the
table, the gap between theory and experiment has widened here, with the non-
linear mode predicted to be of higher frequency and higher damping than the
experimental results shown. 1In ‘ .gure 18, increasing the input amplitude to
.4 in. yielded an unstable limit cycle, ¥AL, and a divergent yaw attitude
response, ¥, (f = -.081). Theory again predicted the initial limiter input
accurately, but predicted a higher frequency and more highly damped nonlinear
mode (Z = 0).

To summarize the parallel/series conf/guration response, it wos found
that an unstable system response may be obtained by increasing either tie
input amplitude or frequency above a suffizient level. Predictions made
using the describing function linearirsatiion technique were very accurate when
calculating limiter input magnitude; however, t% on! 'near mode was con-
sistently less stable than that predicted by theory.

The series servo configuration tolerates a higher limiter input signal
before saturation since the limits are proportional to series servo authority
(full authority for this configuration). System responses to each of the low
frequency inputs, shown in figures 19 and 20, snow no saturation and no non-
iinear mode overlaying ihe output. From Table 1 it may be seen rhat these
responses were well predicted by theory. Increasing input frequency to
8 rad/sec in the low amplitude case, figure 21, produces no saturation due tc
the larger limiter tolerance. (Recall the stable limit cycle in figure 17 for
a .1 sin (8t) input into the parallel/series mode.) Again, ro destabilizing
nonlinear mode is present in the time history, consistent with the theoretical
prediction. Increasing the input amplitude to .4 in. (figure 22) produces a
stable limit cycle, y,p, and a fairly well damped nonlinear mode '{ = .54).
Again, theory predicted a more stable nonlinear mode ({ = .75) than was found
from experiment. Recall that the response of the parallel/series :ystem to
an input of .4 sin (8t) (flgure 18) was an unstable limit cycle, and divergent
aircraft yaw response.

Theoretical predictions of series servo mode response were found to be
approximately as accurate as those of the parallel/series mode. In each casze
limiter input magnitude was predicted very accurately; however, the nonlincar
wode damping was overpredicted, indicating a less stable system experimentally
than would be anticipated from theory.

In this section, it has been found that rhe jescribing function linear-
ization provides a reasonably accurate prediction <f system behavior. By
substantiating the results of the previous tn:oretical discussion, it may be
concluded that the full authority series con{iguration, while affected by the
low frequency nonlinear mode, will always rexain stable. Prediction of the
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stability of the parallel/series mode provides the motivation for the balance
of this report. Recall that the critical differences in system response
between the implementations were due to:

1. a lower limiter input magnritude tolerance in the parallel/series
system, and

2. the extra open loop pole at the origin introduced by the
parallel/series implementatiua.

The following sections of the report concentrate: (1) on placing boundaries
on the instability in the parallel/series implementation and (2) on evaluat-
ing the stabilizing effects of various system cc. figuration changes, keeping
in mind the critical differences between the implementations which apparently
introduced the inscability.

Effect of Input Amplitude and Bandwidth

Addressed in this section of the report is the theoretical prediction
of the stability boundary for sinusoidal and square wave inputs, and the
accuracy of that prediction, as verified by experiment. Using the iteration
technique for describing function gain value as a function of system input
discussed previously, the theoretical stability boundary as a function of
input amplitude and frequency has been determined. This theoretical boundary
is based on the value of b;/A for neutral stability determined from figure
13, The experimental bou-dary was found, as shown in the time histories,
from the digital model.

3inusoidal Input.— Figure 23 illustrates the stability boundary for
sinusoidal inputs of various magnitudes at the nominal limiter authority of
20% (¢.12 inches). The input magnitude whicn the system will tolerate was
found to be inversely proportional to the input frequency. From the figure
it can be seen that the theory shows excellent correlation with experimental
results for small input amplitudes, and becomes progressively less accurate
as the amplitude increases. Recall from the previous comparison of predicted
and actual responses that the theory consistently predicted a more stable
response than experimental results showed, for the saturated limiter.

Due to the distortion of the frequency response of * e nonlinear system
between system input magnitude, M, and limiter input magnitude, A, a dis-
continuity or "jump'" resouance, as described in reference 5, was found tu
exist. Shown in figure 24 is the frequency response of the linear system and
the jump discontinuity responses for three nonlinear system input magnitudes.
At saturation (recall for nominal 20% series servo authority, the limits are
+,12) for each system input magnitude, M, the limiter input magnitude, A,
suddenly jumps to a much higher value causing a sudden decrease in describing
function gain, by /A, and thus total system gain, sufficient to cause an
unstable limit cycle. (Theoretically, this behavior has the characteristics
of a hysteresis with the resonance frequency dependent upon the side from

o ——— o, -
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which it is approached, but this was not successfully demonstrated experi-
mentally.) Since the saturation point decreases with input magnitude, the
resonance frequency also decreases as a function of input magnitude in a
manner consistent with the inverse proportionality between tolerable input
magnitude, M, and frequency, w, shown in figure 23.

This type of insidious instability due to saturation would be extremely
hazardous operationally because of its unpredictability to a pilot. Figures
25 and 26 show the time history response which may be anticipated for inputs
of 61¢ = .4sin(1.22t) and .4sin(l.25t), respectively. The difference
between stability and instability in this case was found to be as little as
.03 rad/sec. Because the transition to an unstable system is not gradual or
predictable, in order to acquire an acceptable pilot-in-the-loop control
system, the stability boundary mi. ¢ be avoided during opera“ion or eliminated
entirely.

Square Wave Input.— Sudden maneuvers require more abrupt pilot inputs
and are better approximated by a square wave. In this section of the report,
the magnitude vs. frequency stability boundary established in the previous
discussions has been extended to include a square wave. Using Fourier series,
as u:scribed in reference 6, the square wave has been modeled analytically by
equation (6) using up to the 2lst harmonic of the fundamental firequency com-
ponent.

21
M 1
. Z=: a sinnt (6)

A theoretical model including the complexity of the 2lst harmonic was
chosen because of the very close resemblance of the time response using this
representation and that of a square wave as shown in figures 27 and 28. 1In
figure 28, upstream signals, yp;, ¥aL, and yaw accelerationm, ¥, include a
significant amount of the higher frequency Fourier series components. However
yaw attitude response, Yy, is virtually identical to that commanded by the
actual square wave, as in figure 27.

System stability for a sine wave input was found to be very sensitive to
input frequency. It would be anticipated that, because of the composition of
very high frequencies required to model the straight sides of the square wave,
system stability to a square wave input would be reduced significantly from
that of a sine wave.

Shown in figure 29 are the theoretical and experimental stability
boundaries for a square wave system input. The theoretical curve was gene-
rated using the Fourier series approximation as the input into the iteration
technique for describing function gain value., The experimental curve reflects
system response to an actual square wave, rather than the Fourier series
approximation. As shown, the stability boundary is reduced significantly
from the sinusoidal case in each magnitude and frequency. For example, a
square wave input of amplitude M/M,__ = .1 becomes unstable at .15 rad/sec
as compared with 1.8 rad/sec for a s!ﬁusoidal input of the same amplitude.

As with the sinusoidal stability boundary, for hicher input magnitudes, theory

10
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predicts a more stable response than the experimental results show. Jump
resonance phenomena also exist here, as shown in the distorted frequency
response of system input magnitude to limiter input magnitude in figure 30.
Due to the multi-frequency composition of the square wave, several jump dis-
continuities exist at different resonance frequencies.

Thus, the magnitude-frequency boundary is also a function of input
shape; specifically, stability of the system response is significantly more
sensitive to a square wave than to a sinusoidal input.

Effect of Series Servo Authority

One of the critical differences between the parallel/series and series
servo systems is the higher limiter values of the latter which occur because
of the proportionality between series servo authority and limiter magnitude.
Nominal limits of the parallel/series system are based on 20% series servo
authority and the maximum practical limits would be based on 50%. In this
section of the report, the effect of variation of series servo limits on the
nonlinear system has been evaluated.

Theoretically, the result of increased series servo authority may be
understood to have a stabilizing effect on system response by recalling the
dependence of describing function gain, b;/A, on limiter size, a, from
equation (3). As the limiter magnitude is increased, so is ihe minimum
allowable describing function gain value, yielding greater system stabiliity.

From figure 31 (generated analytically) it may be seen that the sta-
bility boundary as a function of series servo authority normalized to input
magnitude varies almost linearly with low sinusoidal input frequencies. As
the ratio of series servo authority to input magnitude increases (either by
increasing series servo authority or decreasing input -~agnitude, as previously
discussed) the system's tolerance to input frequency . 1increased. Note that
a percentage of series servo authority normalized to input magnitude exists
such that at or above which the system has a stable response at all input
frequencies.

Tr» trend toward increased system stability for increased series servo
authority is further illustrated in figure 32. The comparison of magnitude-
frequency tradeoff for nominal and increased series servo authority, 20% and
50%, respectively, was tound to show a significant increase in the stability
boundary at the maximum pructical limit of 50X seriea servo authority.

Effect of System Bandwidth
Evaluated in this part of the report are the influences of system band-
width on nonlinear system stability. Contributions to bandwidth that are

considered are the yaw angle and rate feedback gains and the parzllel servo
gain in the forward loop.
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Yaw Angle and Rate Feedback Gain Variations.— Variation of the yaw angle
feedback gain, Ky (as in figure 4), with simultaneous variation of the yaw
rate feedback gain, Ky, in order to maintain adequate closed loop damping,
showed a significant increase in linear system phase margin but almost no
change in gain margin. This is illustrated in figure 33 for variations in

and  K; from the nominal values of 4.0 and 4.0 to .5 and 1.45, respec-
tively.

However, nonlinear stability boundary changes were found to be unfavor-
able for reduction of yaw angle and rate fecdbalk gaius as showm in figure 34,
From the figure, two trends were noted: (1) as system bandwidth was reduced,
the system's tolerance to magnitude at high input frequencies was increased
slightly because of the lever describing function gain value for neutral
stability due to the lower feedback gains, Ky and Ky. However (2), for the
same amount of system bandwidth reduction, a much greater reduction in input
bandwidth occurred. Equation (5) shows the relationship between system input,
8145 describing function gain, by/A, and the yaw angle and rate feedback

gains, KW and Ky .

More favorable nonlinear system results were obtained by varying onl
the yaw angle feedback gain, while maintaining the yaw rate feedback gain
at its nominal value. (This resulted in a 20% to 30% decrease in closed loop
damping ratio.) Varying showed little effect on linear system stability
criteria, as illustrated in figure 35 for values of KW from the nominal
value of 4.0 to the limiting value of O.

Changes in the nonlinear system stability boundary with were found
to exhibit the same two general trends as previously noted (figure 36).
Specifically, these were a reduction in tolerable input bandwidth and an
increased level of system tolerance to magnitude at high input frequencies.
In this case, however, the increased tolerance to magnitude at high fre-
quencies outweighs the input bandwidth loss, resulting in a net favnrable
effect on the nonlinear stability boundary.

Recall that a critical difference between the parallel/series and series
only systems was the introduction of an open loop pole at the origin into thne
parallel/series system by the parallel servo. This extra open loop integrator
had a destabilizing influence on the parallel/series system as was shown in
figures 13 and 14. Elimination of the yaw angle feedback (Ky = 0) changed
the parallel/series system into one with only three open loop poles at the
origin (as in the series only system),

Figure 37 illustrates the variation of the system eigenvalues with
describing function gain value for the closed loop system without yaw angle
feedback. From the figure it may be seen that as the describing function
gain, by /A, approaches zero, the branches of closed loop eigenvalues depart
vertically and remain in the left half plane. In figure 36, then, the sta-
bility boundary is completely eliminated for Ky = 0. Stabilizing the system
in this manner does not preclude the existence of the low frequency nonlinear
mode. The frequency and damping of this mode vary, as before, with describ-
ing function gain value, calculated from equation (5) as a function of system

12
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input. Eliminating the vaw angle feedba~k and thereby stabilizing the system
ensures only that the damping of this mode will be positive.

Yaw angle feedback elimination changes the system from the designed
rate-command-attitude-hold configuration to rate~command only. System
response, although stable for all inputs, lacks directional-hold capability.
With an inadequate yaw rate sensor, heading drift may present a problem; also,
removal of attitude-hold removes the control system's resilience to wind or
turbulence upsets.

Parallel Servo Gaia Variations.— In terms of operational safety considera-
tions, it was desirable to maximize the saturation time following a runaway
failure, and thus minimize parallel servo gain, K,.. Another consideration
in gain selection was the upstream limiting of the parallel servo input signal
by the series servo limiter. Due to the proportionality of the series servo
limiter value to series servc authority, the parallel servo gain was chosen
to be inversely proportional to this parameter. Parallel servo gain, then,
ac shown in equation (7) is a function of the time which is allowed for satu-
ration of the parallel servo in the case of a runaway failure and of the
fraction of the total control power allotted to the series servo.

K = L (7
paralle) (Series Servo)(Saturation)

servo Authority Time

The same trends as in the previous discussion were apparent with the
system bandwidth reduction due to lowering of the parallel servo gain, Kps‘
Linear system phase and gain margins were found to increase, although much
more significantly than in the case of the attitude feedback gain, with
parallel servo gain reduction, as illustrated in figure 38. From the figure,
it may be seen that a significant stabilization of the linear system occurs
with reduced parallel servo gain.

With the nominal value of 20% series servo authority, the minimum value
of parallel servo gain may be established to be Kgs = ,25, based on a maxi-
mum practical saturation time of 20 seconds. If the series servo authority
were increased to the maximum reasonable level of 50%, a minimum value of
Kpg = .1 1is acceptable. The same general trends, specifically a reduction
in tolerahle input bandwidth and an increased level of system tolerance to
magnitude at high input frequencies as were previously noted for attitude
feedba :k gain reduction, were found to also apply to the reduction of parallel
se~vo gain, These trends are illustrated for the nonlinear system with 20%
.eries servo authority in figure 39 where it may be seen that the undesirable
loss of input bandwidth far outweighs the gain in system tolerance to magni-
tude at high frequencies for a given reduction in parallel servo gain.

Figure 40 shows the change in nonlinear ctability boundary with parallel

servo gain for a system with 50X series servo authority. The combination of
the inherently stabilizing effect of increased servo authority and the smaller
minimm acceptable parallel servo gain of g = -1 resulted in a net favor-
able effect on the nonlinear stability boundary.

13
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CONCLUSIONS

The analysis described in this report encompassed linear and nonlinear
stability analyscs of the state-rate-feedback-implicit-model-following control
system of reference 3. Theoretical stability predictions of the nonlinear
system were accomplished using a describing function linearization technique.
Fxperimental results obtained from a digital model were used to substantiate
the theory. Trom this analysis, the following specific conclusions have been
drawn:

1. The experimental analysis using the simplified Fortran model was
accomplished non-real-time with a sampling period of T = ,005 seconds.
Although the real-time computer simulation uses a sampling period of T = .05
seconds, the linear system's dynamic characteristics were found to be repre-
sented much more accurately with T = ,005 seconds.

2. Analytical prediction of nonlinear systen. stability using the
describing function linearization technique for a simple limiter was found to
be valid for each of the sinusoidal and square wave system inputs.

3. In its nominal configuration, the full authority series servo mode
was found to be stable at all system inputs; the parallel/series servo mode
was found to be conditionally stable and possibly unacceptable for inputs
which saturate the limiter upstream of the parallel and series servos. This
conditional stability results from the extra open loop pole at the origin
introduced in the parallel/series implemcntation. The effect of the series
servo position limiter is sufficient to reduce the system gain and introduce
a low frequency instability.

4, A stability boundary, in which tolerable input magnitude was
inversely proportional to input frequency was found to exist in the
parallel/series servo mode. In terms of this stability boundary, signifi-
cantly more sensitivity was observed to a square wave input due to its high
frequency composition than to a sine wave input.

5. Increasing the fraction of total control power allotted to the
series servo was found to have a significantly favorable effect on the sta-
bility of the nonlinear system with parallel/series servo implementation.
Increasing the series servo authority to its maximum practical level was
found to raise, but not eliminate, the stability boundary.

6. In terms of the magnitude-frequency stability boundary, reduction of
yaw angle and rate feedback gains was found to affect the nonlinear stability
] boundary unfavorably. Yaw angle feedback gain reduction (alone) improved

: stability, resulting in a relatively small input bandwidth reduction and a

{ more significant increase in system tolerance to magnitude at high input fre-
quencies. Elimination of yaw angle feedback was found to stabilize the
parallel/series system; however removal of the attitude hold capability
reduces the system's resilience to rate gyro drift or atmospheric distur-
bances.

14
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7. Parallel servo gain reduction (alone) was found to have an adverse

effect on nonlinear system
to magnitude at high input
tively large loss of input
reduction and series servo
system stability.

stability. The small increase in system tolerance
frequencies was by far outweighed by the rela-
bandwidth. The combination of parallel servo gain
authority increase was found to improve nonlincar
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APPENDIX

GAIN EQUIVALENCES AND INITTAL VALUES

SRFIMF Initial Numerical Value
LMGIw 2.1 in.
Kig 0.3948
L oY) 0.9349
Ky 4.0
K, 4.0
Kyy 0.3324
LMy, . $0.12 in.
T, 0.05/sec
K39 2.533
Cy 1.0
Kyc 1.0
FCN 7.5
Initial
SRF IMF Numerical Value
le : -—
W51y +2.1 in.
(KW x Kyy) 1.33
(K10 + K20) 1.33
(R30 x Gy x FCN x Kpopque/1,) 0.7082
(KTORQUE/Iz) 0.0373
- 2.5
(K3g x Kps x Kyo x FCN) 47.49
- 7.0
(Kss x K3p) 17.73
K¢ 4.0
Ky 4.0
17
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Figuve 8.- Partial root locus of linear system, series servo mode.
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TIME HISTORY ANALYSIS

T, sec

0.005
0.050
0.005
0.050
0.005
0.050
0.005
0.050

o> proodda

GAIN W, Wy ¢

075 7.66 796 0.27
0.75 6.66 6.81 0.20
060 690 7.09 0.23
060 589 6.00 0.19
045 576 584 0.16
045 506 5.07 005
030 460 4.60 0.03
0.30 UNSTABLE RESPONSE

LINEAR ANALYSIS

GAIN

v 075
O 0.60
& 045
¢ 030

Wy Wy T
7358 7.73 031
6.56 6.76 0.24
575 5.81 0.15
480 480 0.03

-
=
b

{ /\/ )
-20 -10

Figure 11.- Time history vs. linear analysis, parallel/series servo modc.
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Figure 13.- Variation of closed-loop roots with magnitude of nonlinearity (bl /AY,

parallel/series servo mode.
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Figure 36.- Amplitude-frequency stability boundary as a function of yaw angle
feedback gain, Klb'
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